
Coefficients of Recursive Linear Time-Invariant
First-Order Low-Pass and High-Pass Filters

(v0.1)

Cliff Sparks
www.arpchord.com

The following is a quick overview of recursive linear time-invariant first-order low-pass and high-
pass filters. Such algorithms are often used in simple audio applications, however there are many 
implementations of these algorithms which use an approximate or incorrect cutoff frequency 
formula, some that have inaccurate gain compensation, and most with no explanation of where the 
coefficients in the recursion formula originate from. We derive from first principles formulae for 
these coefficients for the low-pass and high-pass cases.

Setup

Consider the difference equation

yn = b0 xn+b1 xn−1−a1 y n−1

where xn denotes input data at time sample n and yn denotes corresponding output data. The 
coefficients b0 , b1 , a1 are parameters to be determined. The transfer function for the above 
difference equation is

H (z )=
b0+b1 z−1

1+a1 z−1 = b0

(1−β z−1
)

(1−α z−1
)

where α is the pole of the transfer function and β is the zero of the transfer function. It follows 
that

a1 =−α , b1 =−b0 β .

To obtain real output from real input we require b0 ,α ,β to be real. We also require ∣α∣< 1 for 
filter stability (at ∣α∣= 1 the filter is said to be marginally stable). Furthermore, we may set

b0 > 0 since the sign of b0 only manifests itself as a π phase shift in the output.

The gain G(ω ) of the filter is

G(ω) =∣H (e jω
)∣= b0 √ 1−2β cos (ω)+β 2

1−2α cos (ω)+α 2 .

The phase Θ (ω ) of the filter is

Θ (ω )= arg( H (e jω
))= tan−1( β sin (ω )

1−β cos (ω ))−tan−1( α sin(ω)

1−α cos(ω )).

The radian frequency ω is related to the normalised frequency f via ω = 2π f.

We now concern ourselves with low-pass and high-pass analysis, and as is the goal with most 
filters, concentrate on the gain only.



Low-Pass

Firstly set the gain of the filter to be unity at zero frequency (DC). For these first-order filters this 
will also be the place of maximum gain. Thus

1 = G (0)= b0

(1−β )

(1−α )
.

We can construct three types of low-pass: a one-zero filter, a one-pole filter, and a one-pole-one-
zero filter. Consider the one-zero case. Here α = 0 and so

b0 =
1

(1−β )
, b1 =−

β
(1−β )

, a1 = 0.

We will choose a β which satisfies G2
(ω c) = 1/2, where we call ω c the cutoff frequency. 

Thus

1
2

=
(1−2 β cos(ω c)+β 2

)

(1−β )
2

Solving this quadratic yields

β =−1+2cos (ω c )+2√(cos(ω c)−1)cos(ω c)

where we choose the positive root for convenience so that β lies inside the unit circle. We see 
that the range of ω c is restricted in order for β to be real. Specifically

π
2

⩽ ω c ⩽ π

with ω c = π /2 yielding the maximum possible overall attenuation. This is a major sonic 
restriction, however we do have that when ω c = π /2, β =−1, thus frequencies at Nyquist are 
attenuated all the way to zero.

Let's now examine the one-pole case. Here β = 0 and so

b0 =(1−α ) , b1 = 0, a1 =−α .

Choose an α which satisfies G2
(ω c) = 1/2 :

1
2

=
(1−α)

2

(1−2α cos (ω c)+α 2
)

which is a quadratic with solution

α = 2−cos (ω c)−√(cos (ω c)−3)(cos (ω c )−1)

where we have chosen the positive root to ensure ∣α∣⩽ 1. Here there is no restriction on ω c ;
α is always real. This filter also sounds much better than the one-zero version. The one-pole 

low-pass filter is the most common first-order low-pass filter algorithm. However there are no 



places where the attenuation drops all the way to zero.

Now for the one-pole-one-zero case. We have G2
(ω c) = 1/2 but we need another relation 

between α and β . With higher-order filters conditions such as maximal flatness in the 
passband or minimal phase distortion in the passband can be set. Such conditions set certain terms 
in a Taylor series expansion involving ω to zero. The author has tried implementing maximal 
flatness and minimal phase distortion in the present first-order case and found that only if α
and/or β are complex can either be achieved. However, there is a simpler choice of condition: 
that of ensuring the gain at Nyquist is zero. Setting G(π )= 0 yields 1+2β +β 2

= 0 i.e.
β =−1. Then

b0 =
(1−α )

2
, b1 =

(1−α )

2
, a1 =−α .

Now apply G2
(ω c) = 1/2 :

1
2

=
(1−α )

2

4
2(1+cos(ω c))

(1−2α cos(ω c)+α 2
)

which is a quadratic with solution

α =
1−sin(ω c)

cos (ω c )

choosing the negative root so that α is finite at ω c = π /2. So as for the one-pole case there are 
no restrictions on ω c . This one-pole-one-zero version of the low-pass filter sounds the best, as 
one might expect.

High-Pass

Firstly set the gain of the filter to be unity at maximum frequency (Nyquist). For these first-order 
filters this will also be the place of maximum gain. Thus

1 = G (π ) = b0

(1+β )

(1+α )
.

As for the low-pass filter, we can construct three types of high-pass. For the one-zero case α = 0
thus

b0 =
1

(1+β )
, b1 =−

β
(1+β )

, a1 = 0

with
β = 1+2cos(ω c)−2√(cos(ω c)+1)cos (ω c )

Thus as for the low-pass filter the range of ω c is restricted in order for β to be real. Specifically

0 ⩽ω c ⩽ π
2



with ω c = π /2 yielding the maximum possible overall attenuation. This again is a major sonic 
restriction, however we do have that when ω c = π /2, β = 1, thus frequencies at DC are 
attenuated all the way to zero.

Now for the one-pole case. Here β = 0 thus

b0 =(1+α ) , b1 = 0, a1 =−α

with
α =−2−cos(ω c)+√(cos (ω c)+3)(cos(ω c)+1)

and no restriction on ω c . This filter sounds roughly similar to the one-zero version; the difference 
between the one-pole and one-zero is much less pronounced than for the low-pass case. Again there 
are no places where the attenuation drops all the way to zero.

Now for the one-pole-one-zero case. Following the low-pass example, let's set the gain at DC to be 
zero. That is, G(0) = 0 yielding 1−2β +β 2

= 0 i.e. β = 1. Then

b0 =
(1+α )

2
, b1 =−

(1+α )

2
, a1 =−α

with

α =
1−sin(ω c)

cos (ω c )

which is the same equation as in the low-pass case. Thus again no restriction on ω c , and also this 
is the best-sounding version of the three high-pass filters. The one-pole-one-zero high-pass filter is 
the most common first-order high-pass filter algorithm, where it is often mistakenly labelled as only 
one-pole.

Cascading

First-order filters can be cascaded, by placing them in series, to yield a type of higher-order filter. 
The total attenuation (or boost) of any particular frequency is then simply the multiplication of the 
attenuation (or boost) of that frequency by each of the individual filters. (This is not true, of course, 
for general higher-order filters involving complex conjugate zeros and poles.) Thus places of unity 
and zero gain remain unchanged, so we need only reconsider the cutoff frequency condition in the 
above low-pass and high-pass filters. If m of the one-pole-one-zero low-pass filters are cascaded 
in series we have

1
21 /m =

(1−α )
2

4
2(1+cos (ω c))

(1−2α cos(ω c)+α 2
)

with solution

α =
21/m

−2(√21/m
−1)sin (ω c)−(2−21 /m

)cos(ω c)

21/m cos(ω c)−(2−21/m
)

and for m of the one-pole-one-zero high-pass filters we obtain solution



α =
21/m

−2(√21/m
−1)sin (ω c)+(2−21 /m

)cos(ω c)

21/m cos(ω c)+(2−21/m
)

.
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