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Abstract

Linear time-invariant digital recursive filters are often constructed by applying a transformation to an
equivalent analogue filter. This involves mapping points in the Laplace transform s-plane to points in the
Z-transform z-plane through such means as the bilinear transformation or the impulse-invariance method.
However, these digital filters can of course be constructed directly in the z-plane. The present work is an

analysis of this direct approach for first-order filters, requiring only simple calculus and algebraic techniques.

(This document is a work in progress.)



Chapter 0

Zeroth-Order

The simplest possible filter is of zeroth order. Consider the equation

a0yn = b0xn (0.1)

where xn, yn are sample data and n ∈ Z. If a0 = 0, then b0 = 0 since xn 6= 0 in general. So with a0 6= 0 we
can write (0.1) in the form

yn = γxn (0.2)

where γ is a constant. Applying the Z-transform to (0.2) yields the transfer function H(z):

H(z) =
Y (z)

X(z)
(0.3)

= γ. (0.4)

The frequency response of the filter is obtained by evaluating the transfer function H(z) along the unit circle
z = eıω for all ω, where

ω =
2πf

fs
, (0.5)

f is the input frequency and fs is the sampling rate. The amplitude response of the filter is provided by the
gain G(ω):

G(ω) = |H(eıω)| (0.6)

= |γ|, (0.7)

similarly, the phase response of the filter is provided by the phase Θ(ω):

Θ(ω) = arg
(
H(eıω)

)
(0.8)

= arg(γ). (0.9)

Since H(eıω) is periodic with period 2π, both the gain G(ω) and phase Θ(ω) are also periodic with period
2π. In fact for this zeroth-order case the gain and phase are constants and so are periodic with respect to any
period.

To obtain real output data yn from real input data xn, we require γ = reıθ to be real. If γ > 0, then
θ = 2nπ, n ∈ Z. Since Θ is 2π periodic, we may take n = 0. Thus γ > 0 adjusts the overall input gain with
no phase shift. If γ < 0, then θ = (2n+ 1)π, n ∈ Z. Taking n = 0 we see that γ < 0 adjusts the overall input
gain and applies a phase shift of π, equivalent to inverting the input. If γ = 0, then G(ω) = 0 for all ω and
the output is always zero. In this case θ can assume any value. Thus (0.9) becomes

Θ(ω) =


0, γ > 0

undefined, γ = 0

π, γ < 0.

(0.10)

For the zeroth order filter, the gain or phase at any particular frequency is no more or less than the gain or
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phase at any other frequency.

Chapter 1

First-Order

Consider the linear first-order difference equation with constant coefficients

a0yn + a1yn−1 = b0xn + b1xn−1. (1.1)

If a0 = 0 and b0 = 0, then the first-order filter reduces to the zeroth-order case. If a0 = 0 and a1 = 0, then
b0 = 0 and b1 = 0, since b0 and b1 cannot depend upon the input data. If a0 = 0 and b0 6= 0, then the output
yn−1 depends upon the ‘future’ input xn (and possibly the ‘current’ input xn−1). Such a filter is said to be
acausal. We will concern ourselves only with causal filters, containing no future inputs or outputs. Thus we
assume a0 6= 0, allowing us to write (1.1) in the equivalent form

yn = b0xn + b1xn−1 − a1yn−1. (1.2)

Applying the Z-transform to (1.2) yields the transfer function

H(z) = Y (z)/X(z) (1.3)

=
b0 + b1z

−1

1 + a1z−1
(1.4)

= γ
(1− βz−1)

(1− αz−1)
(1.5)

where
b0 = γ, b1 = −βγ, a1 = −α. (1.6)

α is called the pole of the filter, giving the z location where the denominator of (1.5) is zero. β is called the
zero of the filter, giving the location where the numerator of (1.5) is zero. To obtain real output data yn from
real input data xn, we require the coefficients in (1.2) to be real, hence α, β and γ must also be real by (1.6).
If |α| > 1, then |a1| > 1, yielding an unstable filter. If |α| = 1 the filter is said to be marginally stable; if
|α| < 1 the filter is said to be stable. There is no such stability restriction on β or γ.

The gain of the filter is

G(ω) = |H(eıω)| (1.7)

= |γ|
√

1− 2β cosω + β2

1− 2α cosω + α2
(1.8)

and the phase

Θ(ω) = arg
(
H(eıω)

)
(1.9)

= arg(γ) + tan−1
{

β sinω

1− β cosω

}
− tan−1

{
α sinω

1− α cosω

}
(1.10)

≡ arg(γ) + tan−1
{

(β − α) sinω

1 + αβ − (α+ β) cosω

}
. (1.11)

The derivative of (1.8) is
dG

dω
=

|γ|(α− β)(αβ − 1) sinω√
(1− 2β cosω + β2)(1− 2α cosω + α2)3

(1.12)
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and of (1.10) is

dΘ

dω
=

β(cosω − β)

1− 2β cosω + β2
− α(cosω − α)

1− 2α cosω + α2
(1.13)

≡ (α− β)
(
(α+ β)− (1 + αβ) cosω

)
(1 + α2)(1 + β2)− 2(α+ β)(1 + αβ) cosω + 4αβ cos2 ω

. (1.14)

Observations

Reciprocal Solutions
Substitute βrcp = 1/β into (1.8):

G(ω) =
|γ|
|βrcp|

√
1− 2βrcp cosω + β2

rcp

1− 2α cosω + α2
. (1.15)

If |γ| = |γβ | for |β| < 1 and |γ| = |βrcp||γβ | for |β| > 1, then (1.8) and (1.15) yields the same equation for β
and its reciprocal βrcp at any chosen frequency. (A similar argument applies to α however we can only choose
one |α| < 1 for stability.)

Zero Gain
Provided the denominator of (1.8) is non-zero, the gain is trivially zero when |γ| = 0 and more interestingly
zero when

β2 − 2β cosω0G + 1 = 0 (1.16)

for some frequencies ω0G . (1.16) has solution

β = cosω0G ±
√

cosω2
0G
− 1 (1.17)

which is real only when cosω0G = ±1, i.e. when ω0G = 2nπ, n ∈ Z, the DC frequency, or when ω0G =
(2n+ 1)π, n ∈ Z, the Nyquist frequency. At these frequencies β = 1 and β = −1 respectively.

Infinite Gain
Provided the numerator of (1.8) is non-zero, the gain is infinite when

α2 − 2α cosω∞G
+ 1 = 0 (1.18)

for some frequencies ω∞G
. (1.18) is the same form as (1.16) and has real solutions for α only at DC and

Nyquist, i.e. when α = 1 and α = −1 respectively.

Average Gain
Let the gain at DC be GDC and that at Nyquist GNyq. Consider the geometric mean

Gavg =
√
GDCGNyq (1.19)

= |γ|
√
|1− β2|
1− α2

(1.20)

by evaluating (1.8) at DC and Nyquist in turn. We also have that

Gavg = |γ|
√

1− 2β cosωavgG + β2

1− 2α cosωavgG + α2
(1.21)

by evaluating (1.8) at Gavg = G(ωavgG). Suppose |β| 6 1. Then eliminating
Gavg

|γ| from (1.20) and (1.21) we

find
(β − α)

(
(1− α cosωavgG)β + α− cosωavgG

)
= 0. (1.22)

If β = α, the gain is constant, and ωavgG can assume any value. If β 6= α, then

cosωavgG =
α+ β

1 + αβ
, |β| 6 1. (1.23)
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Now suppose |β| > 1. Eliminating
Gavg

|γ| from (1.20) and (1.21) we find

(1− αβ)
(
(α− cosωavgG)β + 1− α cosωavgG

)
= 0. (1.24)

If β = 1/α, the gain is again constant, and ωavgG can assume any value. If β 6= 1/α, then

cosωavgG =
1 + αβ

α+ β
, |β| > 1 (1.25)

which is (1.23) with β replaced by 1/β. We expect this result due to the reciprocal nature of β.

Cutoff Gain
Suppose we are given a frequency ωref at which the gain is Gref and we want to find a frequency ωkc such that

G2(ωkc) = κG2
ref

= G2
kc (1.26)

with 0 < κ < 1. We call ωkc a cutoff frequency. The cutoff frequency denotes a transition from a passband
(very little attenuation of input signal frequencies) to a stopband (large attenuation of input signal frequencies).
It follows from (1.8) that(
(1−κ)(1+α2)−2(cosωref−κ cosωkc)α

)
(β2+1)−2

(
(cosωkc−κ cosωref)(1+α2)−2(1−κ)(cosωref cosωkc)α

)
β = 0.

(1.27)
If, in addition, we set κ = 1/2, we have that(

(1+α2)+2α(cosωhc−2 cosωref)
)
(β2 +1)+2

(
(cosωref−2 cosωhc)(1+α2)+2α cosωref cosωhc

)
β = 0 (1.28)

where we have substituted ωhc for ωkc.

Zero Gain Derivative
Provided the denominator of (1.12) is non-zero, the derivative is trivially zero when γ = 0 (for which the gain
is zero), or when β = α or β = 1/α (for which the gain is constant). The derivative is more interestingly zero
when

sinω0dG = 0 (1.29)

for frequencies ω0dG , i.e. at DC or Nyquist. It follows that if the gain is not constant it is strictly monotonic
between DC and Nyquist.

Infinite Gain Derivative
Provided the numerator of (1.12) is non-zero, the derivative is only infinite in the uninteresting cases: DC
frequency and β = 1 or α = 1; Nyquist frequency and β = −1 or α = −1.

Quadrature Phase
Due to the periodic nature of Θ it is the phase difference between two frequencies rather than their absolute
values that is important. Let the phase at DC be ΘDC = 0. The filter output frequency is said to be in
quadrature with the filter input frequency when Θ = π/2. Using (1.10), this occurs for frequency(ies) cosωπ/2
satisfying

cosωπ/2 =
1 + αβ

α+ β
. (1.30)

Zero Phase Derivative
Provided the denominator of (1.13) is non-zero, the derivative is trivially zero when β = α or more interestingly
zero when

cosω0dΘ =
α+ β

1 + αβ
(1.31)

which gives the frequencies ω0dΘ of maximum phase deviation.

Infinite Phase Derivative
Provided the relevant numerator of (1.13) is non-zero, the derivative is only infinite in the uninteresting cases:
DC frequency and β = 1 or α = 1; Nyquist frequency and β = −1 or α = −1.
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Average Phase
Consider the arithmetic mean

Θavg =
ΘDC +ΘNyq

2
(1.32)

occurring at frequencies ωavgΘ . If (1.31) is not satisfied, then the phase is strictly monotonic between
0 6 ω 6 π. Since ΘNyq − ΘDC = nπ, n ∈ Z, it follows that n 6= 0, and since there is only one real
0 6 ωπ/2 6 π satisfying (1.30), we must have that n = 1. Thus if we set ΘDC = 0 then ΘNyq = π and
Θavg = π/2. Alternatively, if (1.31) is satisfied, then ΘDC = 0 implies ΘNyq = 0, and the maximum phase
deviation from either DC or Nyquist is π/2.

Gain & Phase Symmetry
By inspection of (1.23), (1.25), (1.30) and (1.31) we conclude that

ωavgG = ω0dΘ , |β| 6 1 (1.33)

= ωavgΘ , |β| > 1. (1.34)

We will now look at some of the first-order filter types that can be designed.

G2

ω/π
0

0
0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 1.1: One-zero filter gain: High-pass, ωhc/π = 0, 0.2, 0.3, 0.4, 0.5;
Low-pass, ωhc/π = 0.5, 0.6, 0.7, 0.8, 1

1.1 One-zero

Let’s examine the case α = 0. Then the filter has a single zero, and the output only depends on the current
and the previous input. Filters whose output depends only upon current, previous and/or future inputs are
called Finite Impulse Response (FIR) filters, or sometimes convolution filters. With a single zero, the gain
(1.8) simplifies to

G(ω) = |γ|
√

1− 2β cosω + β2 (1.35)
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and the phase (1.10) simplifies to

Θ(ω) = arg(γ) + tan−1
{

β sinω

1− β cosω

}
. (1.36)

We can construct two types of one-zero filter, a low-pass filter, letting low frequencies through whilst blocking
high frequencies, and a high-pass filter, which lets high frequencies through whilst blocking low frequencies.

Θ/π

ω/π

−1

−0.5

0

0

0.2 0.4

0.5

0.6 0.8 1

1

Figure 1.2: One-zero filter phase, |β| > 1: High-pass (top), ωhc/π = 0.5, 0.499, 0.45, 0.3, 0;
Low-pass (bottom), ωhc/π = 1, 0.7, 0.55, 0.501, 0.5

1.1.1 Low-pass

If β < 0, we see from (1.35) that frequencies near Nyquist will be attenuated whilst those near DC will be
boosted. Let’s use γ to normalise the gain at DC to unity, i.e. set G(0) = 1. We obtain

γ =
1

|1− β| , (1.37)

the choice of sign of γ to be explained shortly. Now let ω = ωhc be a cutoff frequency where

G2
hc = 1/2 (1.38)

with Ghc = G(ωhc). Here the cutoff denotes the frequency at which the power (∝ G2) is half of the maximum;
this is a very common definition. In decibel notation 1/2 becomes 10 log10(1/2) dB ≈ −3.0103 dB which is
often stated approximately as −3 dB. From (1.28) β must satisfy

β2 + 2(1− 2 cosωhc)β + 1 = 0, (1.39)
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which is a quadratic with solution

β = −1 + 2 cosωhc − 2
√

(cosωhc − 1) cosωhc (1.40)

where we have chosen the root which keeps the zero outside the unit circle. One observation of (1.40) is that
π/2 6 ωhc 6 π in order for β to stay real. This is a major restriction of our one-zero low-pass filter. A second
observation is that if ωhc is close to π/2, frequencies near Nyquist are attenuated very strongly. In fact, if
ωhc = π/2 we have β = −1 and frequencies at Nyquist are completely blocked. This is a major benefit of our
one-zero low-pass filter.

Θ/π

ω/π

−0.4

−0.2

0

0

0.2

0.2

0.4

0.4

0.6 0.8 1

Figure 1.3: One-zero filter phase, |β| < 1: High-pass (top), ωhc/π = 0.5, 0.499, 0.45, 0.3, 0;
Low-pass (bottom), ωhc/π = 0.5, 0.501, 0.55, 0.7, 1

1.1.2 High-pass

If β > 0, we see from (1.35) that frequencies near DC will be attenuated whilst those near Nyquist will be
boosted. Normalising the gain to unity at Nyquist, i.e. setting G(π) = 1, we obtain

γ =
1

|1 + β| , (1.41)

the choice of sign of γ to be explained shortly. Choose β such that G2
hc = 1/2:

β2 − 2(1 + 2 cosωhc)β + 1 = 0 (1.42)

which has solution
β = 1 + 2 cosωhc + 2

√
(1 + cosωhc) cosωhc (1.43)

choosing the root which keeps the zero outside the unit circle. Here (1.43) requires that 0 6 ωhc 6 π/2 in
order for β to stay real, a major restriction of our one-zero high-pass filter. When ωhc is close to π/2, near
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DC frequencies are attenuated very strongly. In fact, if ωhc = π/2 we have β = 1 and frequencies at DC are
completely blocked. This is a major benefit of our one-zero high-pass filter. We notice that the low-pass and
high-pass one-zero filters are essentially identical in character.

Choice of roots
For the one-zero low-pass and high-pass solutions considered above, if |β| > 1, i.e. if β lies outside the unit
circle, then there are no real frequencies where the phase has a local maximum or minimum. The over-
all phase response may be preferred in this case, being of an approximately linear nature. Alternatively,
if |β| < 1, then the phase deviation is minimised. Such a filter is called a minimum phase filter. A filter
with a completely linear phase response is called a linear phase filter. Only FIR filters can achieve linear phase.

Choice of sign of γ
The choice is such that in the low-pass case, frequencies near DC are phase-shifted as little as possible; in
the high-pass case, frequencies near Nyquist are phase-shifted as little as possible. This is achieved by setting
γ > 0 in both cases.
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ω/π
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0.2

0.4
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1

Figure 1.4: One-pole filter gain: High-pass, ωhc/π = 0, 0.3, 0.5, 0.7, 0.9;
Low-pass, ωhc/π = 0.1, 0.3, 0.5, 0.7, 1

1.2 One-pole

If β = 0 we have a single pole, with the output depending upon the current input and the previous output.
Filters whose output depends on previous and/or future outputs, whether or not the output also depends on
current, previous and/or future inputs, are called Infinite Impulse Response (IIR) filters, or recursive filters.
They are ‘infinite’ in the sense that once an input is fed into the filter, the output can never completely decay
to zero. (Aside: When such filters are coded, care must be taken to ensure that the floating point unit of the
target processor is able to deal with the small numbers that inevitably arise - this is often referred to as the
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‘denormal’ problem.) The gain (1.8) simplifies to

G(ω) =
|γ|√

1− 2α cosω + α2
(1.44)

and the phase (1.10) simplifies to

Θ(ω) = arg(γ)− tan−1
{

α sinω

1− α cosω

}
. (1.45)

We can construct two types of one-pole filter, a low-pass and a high-pass.

Θ/π

ω/π

−0.4

−0.2

0

0

0.2

0.2

0.4

0.4

0.6 0.8 1

Figure 1.5: One-pole filter phase: High-pass (top), ωhc/π = 0, 0.7, 0.9, 0.99, 1;
Low-pass (bottom), ωhc/π = 0, 0.01, 0.1, 0.3, 1

1.2.1 Low-pass

If α > 0, we see from (1.44) that frequencies near DC will be boosted whilst those near Nyquist will be
attenuated. Normalising the gain at DC to unity:

γ = 1− α, (1.46)

where we have set γ > 0. Notice it is not necessary to take the modulus |1 − α| as we similarly did in the
one-zero case since we require |α| < 1 for stability. Choose α such that G2

hc = 1/2:

α2 − 2(2− cosωhc)α+ 1 = 0 (1.47)

which has solution
α = 2− cosωhc −

√
(cosωhc − 3)(cosωhc − 1). (1.48)

where we have chosen the appropriate root so that |α| 6 1. Unlike the one-zero low-pass case, there is no
restriction on ωhc; α is always real. On the other hand, the one-zero filter can perform much better near
Nyquist. The one-pole low-pass filter is the most commonly used first-order low-pass filter algorithm.
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Figure 1.6: One-pole one-zero filter gain: High-pass, ωhc/π = 0.1, 0.3, 0.5, 0.7, 0.9;
Low-pass, ωhc/π = 0.1, 0.3, 0.5, 0.7, 0.9

1.2.2 High-pass

If α < 0, we see from (1.44) that frequencies near Nyquist will be boosted whilst those near DC will be
attenuated. Normalising the gain at Nyquist to unity:

γ = 1 + α, (1.49)

setting γ > 0. Choose α such that G2
hc = 1/2:

α2 + 2(2 + cosωhc)α+ 1 = 0 (1.50)

which has solution
α = −2− cosωhc +

√
(cosωhc + 3)(cosωhc + 1). (1.51)

where we have chosen the appropriate root so that |α| 6 1. Unlike the one-zero high-pass case and as for the
one-pole low-pass case, there is no restriction on ωhc; α is always real. However, the one-zero high-pass filter
can perform much better near DC.

1.3 One-pole One-zero

The best-performing first-order low-pass and high-pass filters are of the one-pole one-zero type (as one might
expect). We can also construct other filter types.

1.3.1 Low-pass

To improve upon the one-pole low-pass filter, let’s place the zero at Nyquist – the most natural choice. Thus
set

β = −1 (1.52)
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Θ/π

ω/π
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Figure 1.7: One-pole one-zero filter phase: High-pass (top), ωhc/π = 0.01, 0.2, 0.5, 0.8, 0.99;
Low-pass (bottom), ωhc/π = 0.01, 0.2, 0.5, 0.8, 0.99

then normalise the gain at DC to unity

γ =
1− α

2
(1.53)

then set G2
hc = 1/2

(α2 + 1) cosωhc − 2α = 0 (1.54)

which has solution

α =
1− sinωhc

cosωhc
(1.55)

selecting the appropriate root so that α is finite at ωhc = π/2. As for the one-pole low-pass case there are
no restrictions on ωhc, although care must be taken if coding this filter when ωhc ≈ π/2. This filter performs
better than the one-pole low-pass filter.

1.3.2 High-pass

To improve upon the one-pole high-pass filter, let’s place the zero at DC – the most natural choice. Thus set

β = 1 (1.56)

then normalise the gain at Nyquist to unity

γ =
1 + α

2
(1.57)

then set G2
hc = 1/2, which yields the same equation (1.54) and solution (1.55) for α as found in the low-pass

case. So again there are no restrictions on ωhc. This filter performs (much) better than the one-pole high-pass
filter. The one-pole one-zero high-pass filter is the most commonly used first-order high-pass filter algorithm,
where it is often (mistakenly) labelled as only one-pole.

11



G2

ω/π
0

0
0.2 0.4

0.5

0.6 0.8 1

1

1.5

2

Figure 1.8: First-order shelf gain, ωavg/π = 0.2: Low-shelf, GDC = 0.5,
√

0.5, 4
√

2,
√

2;
High-shelf, GNyq = 0.5,

√
0.5, 4
√

2,
√

2

1.3.3 Shelving

Instead of specifying the gain to be zero at Nyquist or DC, we can specify any value. This yields a type of filter
called a shelving filter. Suppose G(π) = GNyq and G(0) = GDC, with GNyq > 0, GDC > 0 and GNyq 6= GDC.
Then (1.8) yields the pair of equations

GNyq = |γ| |1 + β|
1 + α

, GDC = |γ| |1− β|
1− α . (1.58)

where we allow γ < 0. Assume for the moment that |β| 6 1. Then the solution for β is

β =
GNyq −GDC + (GNyq +GDC)α

GNyq +GDC + (GNyq −GDC)α
. (1.59)

We can also write (1.58) as
1± α
1± β =

GNyq +GDC + (GNyq −GDC)α

2G±
(1.60)

where G+ = GNyq and G− = GDC. Now consider the geometric mean

Gavg =
√
GNyqGDC. (1.61)

This will occur at a frequency ωavg, analogous to the cutoff frequency of the low-pass and high-pass cases.
Substituting (1.60), (1.61) and either solution for |γ| from (1.58) into (1.8) yields

4G2
avg(1− 2kα+ α2) =

(
GNyq +GDC + (GNyq −GDC)α

)2
(1− 2kβ + β2) (1.62)
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Figure 1.9: First-order shelf gain, ωavg/π = 0.5: Low-shelf, GDC = 0.5,
√

0.5, 4
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2;
High-shelf, GNyq = 0.5,

√
0.5, 4
√

2,
√

2

where k = cosωavg. Substituting (1.59) into (1.62) yields the quadratic(
GDC −GNyq + (GDC +GNyq)k

)
(α2 + 1)− 2

(
GDC +GNyq + (GDC −GNyq)k

)
α = 0. (1.63)

with solution

α =
GDC +GNyq + (GDC −GNyq)k − 2Gavg

√
1− k2

GDC −GNyq + (GDC +GNyq)k
(1.64)

choosing the appropriate root to ensure |α| < 1 for stability. If instead |β| > 1, then the solution for β is

β =
GNyq +GDC + (GNyq −GDC)α

GNyq −GDC + (GNyq +GDC)α
(1.65)

(reciprocal), with α again given by (1.64). For |γ|, either equation in (1.58) can be used (both yield the same
value). The sign of γ is selected depending on whether the phase should be zero at DC or Nyquist.

1.3.4 All-pass

Here we will construct an all-pass filter, which lets all frequencies through with no attenuation or boost. This
allows the phase response to be adjusted without affecting the amplitude response. To achieve this, we set

β =
1

α
. (1.66)

Then (1.8) implies

G(ω) =
|γ|
|α| (1.67)
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Figure 1.10: First-order shelf gain, ωavg/π = 0.8: Low-shelf, GDC = 0.5,
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for all ω. Setting G(ω) = 1 then implies
γ = s±|α|. (1.68)

where s± = ±1, allowing γ < 0 in the present case. The phase simplifies to

Θ(ω) = arg(s±|α|) + tan−1
{

(1− α2) sinω

2α− (1 + α2) cosω

}
. (1.69)

Consider the critical points of the derivative of (1.69):

dΘ

dω
=

(1− α2)
(
2α cosω − (1 + α2)

)
(1 + α2)2 − 4α(1 + α2) cosω + 4α2 cos2 ω

(1.70)

= 0. (1.71)

Assuming a non-zero denominator, and rejecting α = ±1, we require 2α cosω − (1 + α2) = 0, which has
no real solutions for ω. So Θ(ω) is a (strictly) monotonic function of ω. Thus there is a frequency yielding
quadrature, occurring when the denominator of the inverse tangent term in (1.69) is zero:

(α2 + 1) cosωavgΘ − 2α = 0 (1.72)

which is the same quadratic form as (1.54), with solution

α =
1− sinωavgΘ

cosωavgΘ

. (1.73)

(These lines here to ensure all-pass figure is shown.)
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Figure 1.11: First-order all-pass: s± = 1 (top), ωavgΘ/π = 0.1, 0.3, 0.5, 0.7, 0.9;
s± = −1 (bottom), ωavgΘ/π = 0.1, 0.3, 0.5, 0.7, 0.9

(These lines here to ensure all-pass figure is shown.)
(These lines here to ensure all-pass figure is shown.)
(These lines here to ensure all-pass figure is shown.)
(These lines here to ensure all-pass figure is shown.)
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